
Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Copious	 Data:	 The	 “Killer	 App”
for	 FuncHonal	 Programming

October	 29,	 2014	
dean.wampler@typesafe.com
@deanwampler
polyglotprogramming.com/talks

Saturday, October 11, 14

Copyright © Dean Wampler, 2011-2014, Some Rights Reserved. Photos can only be used with
permission. Otherwise, the content is free to use, but attribution is requested.
Photo: Cloud Gate (a.k.a. “The Bean”) in Millenium Park, Chicago, Illinois, USA

mailto:dean.wampler@typesafe.com?subject=About%20your%20Copious%20Data%20talk
mailto:dean.wampler@typesafe.com?subject=About%20your%20Copious%20Data%20talk
http://twitter.com/deanwampler
http://twitter.com/deanwampler
http://polyglotprogramming.com/talks
http://polyglotprogramming.com/talks

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 All	 Rights	 Reserved
Dean	 Wampler...

Architect for
Big Data Products

at Typesafe

Saturday, October 11, 14

Typesafe builds tools for creating Reactive Applications, http://typesafe.com/platform,
including Spark http://typesafe.com/reactive-big-data. See also the Reactive Manifesto,
http://www.reactivemanifesto.org/

Photo: The Chicago River

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 All	 Rights	 Reserved
Dean	 Wampler...

Founder,
Chicago-Area Scala

Enthusiasts
and co-organizer,

Chicago Hadoop User Group

Saturday, October 11, 14

I’ve been doing Scala for 6 years and Big Data for 3.5 years.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 All	 Rights	 Reserved
Dean	 Wampler...

Dean Wampler,
 Jason Rutherglen &

 Edward Capriolo

Hive
Programming

Dean Wampler

Functional
Programming

for Java Developers

Saturday, October 11, 14

My books…

http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved5

What	 Is	 Big	 …	 err…	
“Copious”	 Data?

Saturday, October 11, 14

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Copious	
Data

Data	 so	 big	 that	
tradiHonal	 soluHons	 are	
too	 slow,	 too	 small,	 or	
too	 expensive	 to	 use.

6

Hat tip: Bob Korbus

Saturday, October 11, 14

“Big Data” a buzz word, but generally associated with the problem of data sets too big to
manage with traditional SQL databases. A parallel development has been the NoSQL
movement that is good at handling semistructured data, scaling, etc.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

3	 Trends

Saturday, October 11, 14
Three prevailing trends driving data-centric computing.
Photo: Prizker Pavilion, Millenium Park, Chicago (designed by Frank Gehry)

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved8

Data	 Size	 ⬆

Saturday, October 11, 14
Data volumes are obviously growing… rapidly.
Facebook now has over 600PB (Petabytes) of data in Hadoop clusters!

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved9

Formal	 Schemas	 ⬇

Saturday, October 11, 14
There is less emphasis on “formal” schemas and domain models, i.e., both relational models of data and OO models, because data schemas and
sources change rapidly, and we need to integrate so many disparate sources of data. So, using relatively-agnostic software, e.g., collections of
things where the software is more agnostic about the structure of the data and the domain, tends to be faster to develop, test, and deploy. Put
another way, we find it more useful to build somewhat agnostic applications and drive their behavior through data...

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved10

Data-‐Driven	 Programs	 ⬆

Saturday, October 11, 14
This is the 2nd generation “Stanley”, the most successful self-driving car ever built (by a Google-Stanford) team. Machine learning is growing in
importance. Here, generic algorithms and data structures are trained to represent the “world” using data, rather than encoding a model of the
world in the software itself. It’s another example of generic algorithms that produce the desired behavior by being application agnostic and data
driven, rather than hard-coding a model of the world. (In practice, however, a balance is struck between completely agnostic apps and some
engineering towards for the specific problem, as you might expect...)

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved11

Probabilistic
Models vs.
Formal
Grammars

tor.com/blogs/...

Saturday, October 11, 14
An interesting manifestation of this trend is the public argument between Noam Chomsky and Peter Norvig on the nature of language. Chomsky
long ago proposed a hierarchical model of formal language grammars. Peter Norvig is a proponent of probabilistic models of language. Indeed all
successful automated language processing systems are probabilistic.
http://www.tor.com/blogs/2011/06/norvig-vs-chomsky-and-the-fight-for-the-future-of-ai

http://www.tor.com/blogs/2011/06/norvig-vs-chomsky-and-the-fight-for-the-future-of-ai
http://www.tor.com/blogs/2011/06/norvig-vs-chomsky-and-the-fight-for-the-future-of-ai

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

What	 Is
MapReduce?

Saturday, October 11, 14
Cloud Gate - “The Bean” - in Millenium Park, Chicago, on a sunny day - with some of my relatives ;)

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Hadoop	 is	 the	 dominant	
copious	 data	 pla[orm	

today.

13

Saturday, October 11, 14

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

A	 Hadoop	 Cluster

14

Hadoop v1.X Cluster

node

DiskDiskDiskDiskDisk

TaskTracker
DataNode

node

DiskDiskDiskDiskDisk

TaskTracker
DataNode

node

DiskDiskDiskDiskDisk

TaskTracker
DataNode

master
JobTracker
NameNode

backup master
Secondary
NameNodeNFS

Disk

Saturday, October 11, 14
A Hadoop v1.X cluster. (V2.X introduces changes in the master processes, including support for high-availability and federation…). In brief:
JobTracker (JT): Master of submitted MapReduce jobs. Decomposes job into tasks (each a JVM process), often run where the “blocks” of input files
are located, to minimize net IO.
NameNode (NN): HDFS (Hadoop Distributed File System) master. Knows all the metadata, like block locations. Writes updates to a shared NFS disk
(in V1) for use by the Secondary NameNode.
Secondary NameNode (SNN): periodically merges in-memory HDFS metadata with update log on NFS disk to form new metadata image used when
booting the NN and SNN.
TaskTracker: manages each task given to it by the JT.
DataNode: manages the actual blocks it has on the node.
Disks: By default, Hadoop just works with “a bunch of disks” - cheaper and sometimes faster than RAID. Blocks are replicated 3x (default) so most
HW failures don’t result in data loss.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

MapReduce	 in	 Hadoop

Let’s	 look	 at	 a	
MapReduce	 algorithm:	

Inverted	 Index.
Used	 for	 text/web	 search.

15

Saturday, October 11, 14
Let’s walk through a simple version of computing an inverted index. Imagine a web crawler has found all docs on the web and stored their URLs
and contents in HDFS. Now we’ll index it; build a map from each word to all the docs where it’s found, ordered by term frequency within the docs.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Crawl	 teh	 Interwebs

16

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Web Crawl

index
block

......

Hadoop provides...wikipedia.org/hadoop

......

block
......

HBase stores...wikipedia.org/hbase

......

block
......

Hive queries...wikipedia.org/hive

......

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

Saturday, October 11, 14
Crawl pages, including Wikipedia. Use the URL as the document id in our first index, and the contents of each document (web page) as the second
“column”. in our data set.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Compute	 Inverse	 Index

17

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Web Crawl

index
block

......

Hadoop provides...wikipedia.org/hadoop

......

block
......

HBase stores...wikipedia.org/hbase

......

block
......

Hive queries...wikipedia.org/hive

......

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

Saturday, October 11, 14
Now run a MapReduce job, where a separate Map task for each input block will be started. Each map tokenizes the content in to words, counts the
words, and outputs key-value pairs...

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Web Crawl

index
block

......

Hadoop provides...wikipedia.org/hadoop

......

block
......

HBase stores...wikipedia.org/hbase

......

block
......

Hive queries...wikipedia.org/hive

......

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

Compute	 Inverse	 Index

18

Key-values output
by first map task

Map Task

(hadoop,(wikipedia.org/hadoop,1))

(mapreduce,(wikipediate.org/hadoop, 1))

(hdfs,(wikipedia.org/hadoop, 1))

(provides,(wikipedia.org/hadoop,1))

(and,(wikipedia.org/hadoop,1))

Saturday, October 11, 14
Now run a MapReduce job, where a separate Map task for each input block will be started. Each map tokenizes the content in to words, counts the
words, and outputs key-value pairs...
… Each key is a word that was found and the corresponding value is a tuple of the URL (or other document id) and the count of the words (or
alternatively, the frequency within the document). Shown are what the first map task would output (plus other k-v pairs) for the (fake) Wikipedia
“Hadoop” page. (Note that we convert to lower case…)

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Compute	 Inverse	 Index

19

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Web Crawl

index
block

......

Hadoop provides...wikipedia.org/hadoop

......

block
......

HBase stores...wikipedia.org/hbase

......

block
......

Hive queries...wikipedia.org/hive

......

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

Saturday, October 11, 14
Finally, each reducer will get some range of the keys. There are ways to control this, but we’ll just assume that the first reducer got all keys starting
with “h” and the last reducer got all the “and” keys. The reducer outputs each word as a key and a list of tuples consisting of the URLs (or doc ids)
and the frequency/count of the word in that document, sorted by most frequent first. (All our docs have only one occurrence of any word, so the
sort is moot…)

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved20

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase

Map (or Flatmap):

• Transform one input to
0-N outputs.

Reduce:

• Collect multiple inputs
into one output.

Anatomy:	 MapReduce	 Job

Saturday, October 11, 14
To recap, a true functional/mathematical “map” transforms one input to one output, but this is generalized in MapReduce to be one to 0-N. In
other words, it should be “FlatmapReduce”!! The output key-value pairs are distributed to reducers. The “reduce” collects together multiple inputs
with the same key into

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved21

Saturday, October 11, 14

Pop Quiz: Do you understand this tweet?

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

So,	 MapReduce	 is
a	 mashup	 of	 our	 friends
flatmap	 and	 reduce.

22

Saturday, October 11, 14

Even in this somewhat primitive and coarse-grain framework, our functional data concepts are evident!

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Today,	
Hadoop	 is	 our	 best,	
general-‐purpose	 tool	
for	 horizontal	 scaling	
of	 Copious	 Data.

23

Saturday, October 11, 14

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

MapReduce	 and	 Its	
Discontents

Saturday, October 11, 14

Is MapReduce the end of the story? Does it meet all our needs? Let’s look at a few problems…
Photo: Gratuitous Romantic beach scene, Ohio St. Beach, Chicago, Feb. 2011.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

MapReduce	 doesn’t	 fit	
all	 computaHon	 needs.	
HDFS	 doesn’t	 fit	 all	
storage	 needs.

25

Saturday, October 11, 14

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

It’s	 hard	 to	 implement	
many	 algorithms	
in	 MapReduce.

26

Saturday, October 11, 14

Even word count is not “obvious”. When you get to fancier stuff like joins, group-bys, etc., the
mapping from the algorithm to the implementation is not trivial at all. In fact, implementing
algorithms in MR is now a specialized body of knowledge.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved27

MapReduce	 is	 very	
course-‐grained.

1-‐Map,	 1-‐Reduce	
phase...

Saturday, October 11, 14

Even word count is not “obvious”. When you get to fancier stuff like joins, group-bys, etc., the
mapping from the algorithm to the implementation is not trivial at all. In fact, implementing
algorithms in MR is now a specialized body of knowledge.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved28

MulHple	 MR	 jobs	
required	 for	 some	

algorithms.
Each	 one	 flushes	 its	
results	 to	 disk!

Saturday, October 11, 14

If you have to sequence MR jobs to implement an algorithm, ALL the data is flushed to disk
between jobs. There’s no in-memory caching of data, leading to huge IO overhead.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved29

MapReduce	 is	 designed	
for	 offline,	 batch-‐mode	

analyHcs.

High	 latency;	 not	
suitable	 for	 event	

processing.
Saturday, October 11, 14

Alternatives are emerging to provide event-stream (“real-time”) processing.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

The	 Hadoop	 Java	 API
is	 hard	 to	 use.

30

Saturday, October 11, 14

The Hadoop Java API is even more verbose and tedious to use than it should be.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Let’s	 look	 at	 code	 for	 a	
simpler	 algorithm,	

Word	 Count.
(Tokenize	 as	 before,	
but	 ignore	 original	

document	 locaHons.)
31

Saturday, October 11, 14

In Word Count, the mapper just outputs the word-count pairs. We forget about the document
URL/id. The reducer gets all word-count pairs for a word from all mappers and outputs each
word with its final, global count.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved32

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 static final IntWritable one = new IntWritable(1);
 static final Text word = new Text; // Value will be set in a non-thread-safe way!

 @Override
 public void map(LongWritable key, Text valueDocContents,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 String[] tokens = valueDocContents.toString.split("\\s+");
 for (String wordString: tokens) {
 if (wordString.length > 0) {
 word.set(wordString.toLowerCase);
 output.collect(word, one);
 }
 }
 }
}

class Reduce extends MapReduceBase
 implements Reducer[Text, IntWritable, Text, IntWritable] {

 public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 int totalCount = 0;
 while (valuesCounts.hasNext) {
 totalCount += valuesCounts.next.get;
 }
 output.collect(keyWord, new IntWritable(totalCount));
 }
}

Saturday, October 11, 14
This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your
face. In the next several slides, notice which colors dominate. In this slide, it’s dominated by green for types (classes), with relatively few yellow functions that
implement actual operations (i.e., do actual work).
The main routine I’ve omitted contains boilerplate details for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce
code in this API gets complex and tedious very fast!

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved33

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 static final IntWritable one = new IntWritable(1);
 static final Text word = new Text; // Value will be set in a non-thread-safe way!

 @Override
 public void map(LongWritable key, Text valueDocContents,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 String[] tokens = valueDocContents.toString.split("\\s+");
 for (String wordString: tokens) {
 if (wordString.length > 0) {
 word.set(wordString.toLowerCase);
 output.collect(word, one);
 }
 }
 }
}

class Reduce extends MapReduceBase
 implements Reducer[Text, IntWritable, Text, IntWritable] {

 public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 int totalCount = 0;
 while (valuesCounts.hasNext) {
 totalCount += valuesCounts.next.get;
 }
 output.collect(keyWord, new IntWritable(totalCount));
 }
}

The
interesting

bits

Saturday, October 11, 14
This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your
face. In the next several slides, notice which colors dominate. In this slide, it’s dominated by green for types (classes), with relatively few yellow functions that
implement actual operations (i.e., do actual work).
The main routine I’ve omitted contains boilerplate details for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce
code in this API gets complex and tedious very fast!

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved34

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 static final IntWritable one = new IntWritable(1);
 static final Text word = new Text; // Value will be set in a non-thread-safe way!

 @Override
 public void map(LongWritable key, Text valueDocContents,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 String[] tokens = valueDocContents.toString.split("\\s+");
 for (String wordString: tokens) {
 if (wordString.length > 0) {
 word.set(wordString.toLowerCase);
 output.collect(word, one);
 }
 }
 }
}

class Reduce extends MapReduceBase
 implements Reducer[Text, IntWritable, Text, IntWritable] {

 public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 int totalCount = 0;
 while (valuesCounts.hasNext) {
 totalCount += valuesCounts.next.get;
 }
 output.collect(keyWord, new IntWritable(totalCount));
 }
}

The ‘90s called. They
want their EJBs back!

Saturday, October 11, 14
This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your
face. In the next several slides, notice which colors dominate. In this slide, it’s dominated by green for types (classes), with relatively few yellow functions that
implement actual operations (i.e., do actual work).
The main routine I’ve omitted contains boilerplate details for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce
code in this API gets complex and tedious very fast!

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Use Cascading (Java)

Saturday, October 11, 14
Cascading is a Java library that provides higher-level abstractions for building data processing pipelines with concepts familiar from SQL such as a
joins, group-bys, etc. It works on top of Hadoop’s MapReduce and hides most of the boilerplate from you.
See http://cascading.org.
Photo: Fermi Lab Office Building, Batavia, IL.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Data	 flows	 consist	 of	 	
source	 and	 sink	 Taps	
connected	 by	 Pipes.

Cascading	 Concepts

36

Saturday, October 11, 14

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Flow
Pipe ("word count assembly")

Each(Regex)

HDFS
Tap

(source)

line

Tap
(sink)

GroupBy
words

Every(Count)
word count

Word	 Count

37

Saturday, October 11, 14

Schematically, here is what Word Count looks like in Cascading. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved38

import org.cascading.*;
...
public class WordCount {
 public static void main(String[] args) {
 String inputPath = args[0];
 String outputPath = args[1];
 Properties properties = new Properties();
 FlowConnector.setApplicationJarClass(properties, WordCount.class);

 Scheme sourceScheme = new TextLine(new Fields("line"));
 Scheme sinkScheme = new TextLine(new Fields("word", "count"));
 Tap source = new Hfs(sourceScheme, inputPath);
 Tap sink = new Hfs(sinkScheme, outputPath, SinkMode.REPLACE);

 Pipe assembly = new Pipe("wordcount");

 String regex = "(?<!\\pL)(?=\\pL)[^]*(?<=\\pL)(?!\\pL)";
 Function function = new RegexGenerator(new Fields("word"), regex);
 assembly = new Each(assembly, new Fields("line"), function);
 assembly = new GroupBy(assembly, new Fields("word"));
 Aggregator count = new Count(new Fields("count"));
 assembly = new Every(assembly, count);

 FlowConnector flowConnector = new FlowConnector(properties);
 Flow flow = flowConnector.connect("word-count", source, sink, assembly);
 flow.complete();
 }
}

Saturday, October 11, 14
Here is the Cascading Java code. It’s cleaner than the MapReduce API, because the code is more focused on the algorithm with less boilerplate,
although it looks like it’s not that much shorter. HOWEVER, this is all the code, where as previously I omitted the setup (main) code. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details of the API features used here; we won’t discuss them here, but just
mention some highlights.
Note that there is still a lot of green for types, but at least the API emphasizes composing behaviors together.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Use Scalding (Scala)

Saturday, October 11, 14
Scalding is a Scala “DSL” (domain-specific language) that wraps Cascading providing an even more intuitive and more boilerplate-free API for
writing MapReduce jobs. https://github.com/twitter/scalding
Scala is a new JVM language that modernizes Java’s object-oriented (OO) features and adds support for functional programming, as we discussed
previously and we’ll revisit shortly.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

import com.twitter.scalding._

class WordCountJob(args: Args)
 extends Job(args) {
 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line: String =>
 line.trim.toLowerCase
 .split("\\W+")
 }
 .groupBy('word) {
 group => group.size('count)
 }
 }
 .write(Tsv(args("output")))
}

40

That’s It!!

Saturday, October 11, 14
This Scala code is almost pure domain logic with very little boilerplate. (This is the so-called “Field API” I”m showing. There is a newer Typed API that’s slightly
different.) There are a few minor differences in the implementation. You don’t explicitly specify the “Hfs” (Hadoop Distributed File System) taps. That’s handled by
Scalding implicitly when you run in “non-local” model. Also, I’m using a simpler tokenization approach here, where I split on anything that isn’t a “word
character” [0-9a-zA-Z_].
There is little green, in part because Scala infers type in many cases. There is a lot more yellow for the functions that do real work!
What if MapReduce, and hence Cascading and Scalding, went obsolete tomorrow? This code is so short, I wouldn’t care about throwing it away! I invested little
time writing it, testing it, etc.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Use Cascalog (Clojure)

Saturday, October 11, 14
http://nathanmarz.com/blog/introducing-cascalog-a-clojure-based-query-language-for-hado.html
Clojure is a new JVM, lisp-based language with lots of important concepts, such as persistent datastructures.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

(defn lowercase [w] (.toLowerCase w))

(?<- (stdout) [?word ?count]
 (sentence ?s)
 (split ?s :> ?word1)
 (lowercase ?word1 :> ?word)
 (c/count ?count))

42

Datalog-style queries

Saturday, October 11, 14
Cascalog embeds Datalog-style logic queries. The variables to match are named ?foo.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Use	 Spark
(Not	 MapReduce)

Saturday, October 11, 14
http://www.spark-project.org/
Spark started as a Berkeley project. recently, the developers launched Databricks to commercialize it, given the growing interest in Spark as a
MapReduce replacement. It can run under YARN, the newer Hadoop resource manager (it’s not clear that’s the best strategy, though, vs. using
Mesos, another Berkeley project being commercialized by Mesosphere) and Spark can talk to HDFS, the Hadoop Distributed File System.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved44

import org.apache.spark.SparkContext

object WordCountSpark {
 def main(args: Array[String]) {
 val sc = new SparkContext(...)
 val file = sc.textFile(args(0))
 val counts = file.flatMap(
 line => line.split("\\W+"))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
 counts.saveAsTextFile(args(1))
 }
} Also small and concise!

Saturday, October 11, 14
This spark example is actually closer in a few details, i.e., function names used, to the original Hadoop Java API example, but it cuts down boilerplate to the bare
minimum.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

• Recently embraced by
Cloudera, MapR, and
Hortonworks as a
replacement for MapReduce.

Spark	 is	 the
“Next	 GeneraHon”

45

Saturday, October 11, 14

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

• Distributed computing with
in-memory caching.

• ~30x faster than MapReduce
(in part due to caching of
intermediate data).

Spark

46

Saturday, October 11, 14

Spark also addresses the lack of flexibility for the MapReduce model.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

• Originally designed for
machine learning applications.

• Developed by Berkeley AMP.

• Matei Zaharia

Spark

47

Saturday, October 11, 14

Matei’s graduate work

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Use SQL!	
Hive,	 SparkSQL,	 Impala,

Presto, or	 Lingual

Saturday, October 11, 14
Using SQL when you can! Here are 5 (and growing!) options.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

• Hive: SQL on top of MapReduce.

• SparkSQL: SQL on Spark.

• Impala & Presto: HiveQL with
new, faster back ends.

• Lingual: ANSI SQL on Cascading.

	 Use	 SQL	 when	 you	 can!

49

Saturday, October 11, 14

See http://hive.apache.org/ or my book for Hive, http://shark.cs.berkeley.edu/ for shark,
and http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/
cloudera-enterprise-RTQ.html for Impala. http://www.facebook.com/notes/facebook-
engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
for Presto. Impala & Presto are relatively new.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved50

CREATE TABLE docs (line STRING);
LOAD DATA INPATH '/path/to/docs'
INTO TABLE docs;

CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\W+'))
 AS word FROM docs) w
GROUP BY word
ORDER BY word;

... and similarly for the other SQL tools.

Word	 Count	 in	 Hive	 SQL!

Saturday, October 11, 14
This is how you could implement word count in Hive. We’re using some Hive built-in functions for tokenizing words in each “line”, the one “column” in the docs
table, etc., etc.
Lingual is similarly, but because it’s more ANSI-compliant, the example would be much different.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

We’re	 in	 the	 era	 where
The	 SQL	 Strikes	 Back!	

(with	 apologies	 to	
George	 Lucas...)

51

Saturday, October 11, 14

IT shops realize that NoSQL is useful and all, but people really, Really, REALLY love SQL. So,
it’s making a big comeback. You can see it in Hadoop, in SQL-like APIs for some “NoSQL”
DBs, e.g., Cassandra and MongoDB’s Javascript-based query language, as well as “NewSQL”
DBs.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Combinators

Saturday, October 11, 14
Photo: The defunct Esquire movie theater on Oak St., off the “Magnificent Mile”, in Chicago. Now completely gone!

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Why	 were	 the
Scala,	 Clojure,	 and	 SQL	
soluHons	 so	 concise	
and	 appealing??

53

Saturday, October 11, 14

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Data	 problems	
are	 fundamentally
MathemaHcs!

54

evanmiller.org/mathematical-hacker.html

Saturday, October 11, 14

A blog post about how developers ignore mathematics at their peril!

http://www.evanmiller.org/mathematical-hacker.html
http://www.evanmiller.org/mathematical-hacker.html

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved55

• Monads - Structure.

• Abstracting over collections.

• Control flow and mutability
containment.

	 Category	 Theory

Saturday, October 11, 14

Monads generalize the properties of containers, like lists and maps, such as applying a
function to each element and returning a new instance of the same container type. This also
applies to encapsulations of state transformations and “principled mutability”, as used in
Haskell.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved56

• Monoids, Groups, Rings, etc.

• Abstracting over addition,
subtraction, multiplication, and
division.

	 Category	 Theory

Saturday, October 11, 14

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved57

• (a + b) + (c + d) for some a, b, c, d.

• “Add All the Things”, Avi Bryant,
StrangeLoop 2013.

	 Monoid:	 AddiHon

infoq.com/presentations/abstract-algebra-analytics

Saturday, October 11, 14

For an explanation of this slide, see this great presentation by Avi Bryant at StrangeLoop
2013 on generalizing addition (monoids).

http://www.infoq.com/presentations/abstract-algebra-analytics
http://www.infoq.com/presentations/abstract-algebra-analytics

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved58

• Singular Value Decomposition and
Principal Component Analysis

• Essential tools in machine
learning.

	 Linear	 Algebra

Av vm=
Saturday, October 11, 14

The equation is for a related concept, eigenvector decomposition.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved59

• Represent images
as vectors.

• Solve for
“modes”.

• Top N modes
approx. faces!

Example:	 Eigenfaces

http://en.wikipedia.org/wiki/File:Eigenfaces.png

Saturday, October 11, 14

http://en.wikipedia.org/wiki/File:Eigenfaces.png
http://en.wikipedia.org/wiki/File:Eigenfaces.png

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved60

• Relational Model.

• Data organized
into tuples,
grouped by
relations.

Set	 Theory	 and	
First-‐Order	 Logic

http://dl.acm.org/citation.cfm?doid=362384.362685

Saturday, October 11, 14

Formulated by Codd in ’69. Most systems don’t follow it exactly, like allowing identical
records, where set elements are unique. Codd’s original model didn’t support NULLs either
(“unknown”), but he later proposed a revision to allow them.

http://dl.acm.org/citation.cfm?doid=362384.362685
http://dl.acm.org/citation.cfm?doid=362384.362685

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved61

• Relational Model.

• Most RDBMSs deviate from RM.

Set	 Theory	 and	
First-‐Order	 Logic

Saturday, October 11, 14

Formulated by Codd in ’69. Most systems don’t follow it exactly, like allowing identical
records, where set elements are unique. Codd’s original model didn’t support NULLs either
(“unknown”), but he later proposed a revision to allow them.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved62

• Functions that are side-effect
free.

• They get all their information
from their inputs and write all
their work to their outputs.

What	 are	 Combinators?

Saturday, October 11, 14

Invented by Mathematicians...

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Let’s	 look	 at
4	 relaHonal	 operators	
and	 the	 corresponding	
funcHonal	 combinators.

63

Saturday, October 11, 14

See, for example, the discussions in “Database in Depth” and “SQL and Relational Theory,
Second Edition”, both by C.J. Date (O’Reilly)

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved64

CREATE TABLE word_counts (
 word CHARACTER(64),
 count INTEGER);

(ANSI SQL syntax)

Recall	 our	 Word	 Counts:

val word_counts: Stream[(String,Int)]

(Scala)

Saturday, October 11, 14
Our word_counts table from before, using ANSI SQL syntax this time.
The corresponding Scala might be any kind of collection, e.g., a List. Here, I’ll use a Stream, which is a lazy collection useful for large data structures like I/O...
Note that it’s a stream of a two-element tuple, a String (for the word) and an Int (for the count).

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved65

SELECT * FROM word_counts
WHERE word = 'Chicago';

vs.

Restrict

word_counts.filter {
 case (word, count) =>
 word == "Chicago"
}

Saturday, October 11, 14
For the Scala example, assume word_counts is a collection (List, Vector, etc.) of 2-element tuples. The case match in the anonymous function passed to filter is a
way of conveniently assigning variables to each element of the tuple, here “word” and “count”. Then I filter on only certain word values.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved66

SELECT word FROM word_counts;

Project

vs.

word_counts.map {
 case (word, count) =>
 word
}

Saturday, October 11, 14
Here, I just return the words in each record or Scala tuple.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved67

Join

Table for join examples.

CREATE TABLE dictionary (
 word CHARACTER(64),
 definition CHARACTER(256));

Saturday, October 11, 14
First, we need something to join with; let’s use a dictionary of word definitions.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved68

SELECT w.word, d.definition
FROM word_counts AS w
 dictionary AS d
WHERE w.word = d.word;

Join	 -‐	 SQL

Saturday, October 11, 14
Here is the SQL join that gives us the words and their definitions. (side note: Hive doesn’t support this “inferred” join syntax; you have to use a more explicit JOIN
… ON … syntax.)

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved69

Join	 -‐	 Scalding
val word_counts =
 Csv("/path/…", ('wword, 'count)).read
val definitions =
 Csv("/path/…", ('dword, 'definition)).read

word_counts
 .joinWithLarger('wword -> 'dword,
 dictionary)
 .project('wword, 'definition)

Saturday, October 11, 14
The Scala collections library doesn’t have a join combinator. We would have to build up something that understands the data, such as exploiting sort order. This is
a case where a large-scale data system will implement expensive operations, where a general-purpose programming library might not. So, I’m using a Scalding
example.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved70

SELECT w.word, d.definition
FROM word_counts AS w
 dictionary AS d
WHERE w.word = d.word;

Join

vs.
…
word_counts
 .joinWithLarger('wword -> 'dword,
 dictionary)
 .project('wword, 'definition)

Saturday, October 11, 14
Now shown together, with some of the Scalding setup code removed.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Joins	 are	 expensive.	
Your	 data	 system	 needs	

to	 exploit	
opHmizaHons.

71

Saturday, October 11, 14

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved72

SELECT count, size(word) AS size
FROM word_counts
GROUP BY count
ORDER BY size DESC;

Group	 By

vs.

word_counts.groupBy {
 case (word, count) => count
}.toList.map {
 case (count, words) => (count, words.size)
}.sortBy {
 case (count, size) => -size
}

Saturday, October 11, 14
How many words appeared once, twice, 3 times, ..., N-times? Order this list descending.
I’m back to the Scala library (as opposed to Scalding). The code inputs a collections of tuples, (word,count) and groups by count. This creates a map with the
count as the key and a list of the words as the value.
Next we convert this to a list of tuples (count,List(words)) and map it to a list of tuples with the (count, size of List(words)), then finally sort descending by the list
sizes.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved73

Example
scala> val word_counts = List(
("a", 1), ("b", 2), ("c", 3),
("d", 2), ("e", 2), ("f", 3))

scala> val out = word_counts.groupBy {
 case (word, count) => count
}.toList.map {
 case (count, words) => (count, words.size)
}.sortBy {
 case (count, size) => -size
}

out: List[(Int,Int)] =
 List((2,3), (3,2), (1,1))

Saturday, October 11, 14
Here’s a simple example you can run in the Scala REPL (prompts are “scala>”).

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

We	 could	 go	 on,	 but	
you	 get	 the	 point.

DeclaraHve,	 funcHonal	
combinators	 are	 a	

natural	 tool	 for	 data.	

74

Saturday, October 11, 14

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved75

• SQL

• Optimized for data operations.

• FP

• Turing complete.

• More combinators.

• First class functions!

SQL	 vs.	 FP

Saturday, October 11, 14

A drawback of SQL is that it doesn’t provide first class functions, so (depending on the
system) you’re limited to those that are built-in or UDFs (user-defined funcs) that you can
write and add. FP languages make this easy!!

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

FP	 to	 the	
Rescue!

Saturday, October 11, 14
Outside my condo window one Sunday morning...

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Mul4core	 concurrency	
is	 driving	 FP	 adopHon.

77

Popular	 Claim:

Saturday, October 11, 14

We’ve all heard this. In fact, this is how I got interested in FP.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Data	 will	 drive	 the	 next	
wave	 of	 widespread	

FP	 adopHon.

78

My	 Claim:

Saturday, October 11, 14

Even today, most developers get by without understanding concurrency. Many will just use an
Actor or Reactive model to “solve” their problems. I think more devs will have to learn how to
work with data at scale and that fact will drive them to FP. This will be the next wave.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Data
Architectures

Saturday, October 11, 14
What should software architectures look like for these kinds of systems?
Photo: Two famous 19th Century Buildings in Chicago.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved80

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational
Mapping

Other, Object-
Oriented

Domain Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

Saturday, October 11, 14
Traditionally, we’ve kept a rich, in-memory domain model requiring an ORM to convert persistent data into the model. This is resource overhead and complexity we can’t afford in big data
systems. Rather, we should treat the result set as it is, a particular kind of collection, do the minimal transformation required to exploit our collections libraries and classes representing some
domain concepts (e.g., Address, StockOption, etc.), then write functional code to implement business logic (or drive emergent behavior with machine learning algorithms…)

The toJSON methods are there because we often convert these object graphs back into fundamental structures, such as the maps and arrays of JSON so we can send them to the browser!

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved81

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational
Mapping

Other, Object-
Oriented

Domain Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

Saturday, October 11, 14
But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich
transformations into those libraries, transformations that are composable to implement business logic.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved82

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

• Focus on:

• Lists

• Maps

• Sets

• Trees

• ...

Saturday, October 11, 14
But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich
transformations into those libraries, transformations that are composable to implement business logic.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved83

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Web Client 1 Web Client 2 Web Client 3

FilesDatabase

Saturday, October 11, 14
In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it
easier to write smaller, focused services that we compose and deploy as appropriate.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved84

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Web Client 1 Web Client 2 Web Client 3

FilesDatabase

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

Saturday, October 11, 14
In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it
easier to write smaller, focused services that we compose and deploy as appropriate. Each “ProcessN” could be a parallel copy of another process, for horizontal, “shared-nothing”
scalability, or some of these processes could be other services…
Smaller, focused services scale better, especially horizontally. They also don’t encapsulate more business logic than is required, and this (informal) architecture is also suitable for scaling
ML and related algorithms.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved85

• Data Size ⬆

• Formal
Schema ⬇

• Data-Driven
Programs ⬆

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

Saturday, October 11, 14
And this structure better fits the trends I outlined at the beginning of the talk.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Hadoop	 MapReduce	 is
the	 Enterprise	 Java	 Beans

	 of	 our	 Hme.

Saturday, October 11, 14
I worked with EJBs a decade ago. The framework was completely invasive into your business logic. There were too many configuration options in
XML files. The framework “paradigm” was a poor fit for most problems (like soft real time systems and most algorithms beyond Word Count).
Internally, EJB implementations were inefficient and hard to optimize, because they relied on poorly considered object boundaries that muddled
more natural boundaries. (I’ve argued in other presentations and my “FP for Java Devs” book that OOP is a poor modularity tool…)
The fact is, Hadoop reminds me of EJBs in almost every way. It’s a 1st generation solution that mostly works okay and people do get work done
with it, but just as the Spring Framework brought an essential rethinking to Enterprise Java, I think there is an essential rethink that needs to
happen in Big Data, specifically around Hadoop. The functional programming community, is well positioned to create it...

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Emerging	 replacements
are	 based	 on

	 FuncHonal	 Languages...
import com.twitter.scalding._

class WordCountJob(args: Args) extends Job(args) {
 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line: String =>
 line.trim.toLowerCase
 .split("\\W+")
 }
 .groupBy('word) {
 group => group.size('count) }
 }
 .write(Tsv(args("output")))
}

Saturday, October 11, 14

We’ve seen a lot of issues with MapReduce. Already, alternatives like Spark for general use and Storm for event
stream processing, are gaining traction. Also, special, purpose-built replacements, like Impala, are popular.
FP is such a natural fit for the problem that any attempts to build big data systems without it will be handicapped
and probably fail.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

...	 and	 SQL

CREATE TABLE docs (line STRING);
LOAD DATA INPATH '/path/to/docs'
INTO TABLE docs;

CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\W+'))
 AS word FROM docs) w
GROUP BY word
ORDER BY word;

Saturday, October 11, 14

FP is such a natural fit for the problem that any attempts to build big data systems without it will be handicapped
and probably fail.
Let’s consider other MapReduce options...

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

QuesHons?

October	 29,	 2014	
BigData	 Techcon	 San	 Francisco	
dean.wampler@typesafe.com
@deanwampler	
polyglotprogramming.com/talks

Saturday, October 11, 14

All pictures Copyright © Dean Wampler, 2011-2014, Some Rights Reserved. All other content is free to use, but
attribution is requested.
Photo: Building in fog on Michigan Avenue

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:dean.wampler@typesafe.com?subject=About%20your%20Copious%20Data%20talk
mailto:dean.wampler@typesafe.com?subject=About%20your%20Copious%20Data%20talk
http://twitter.com/deanwampler
http://twitter.com/deanwampler
https://twitter.com/deanwampler
https://twitter.com/deanwampler
http://polyglotprogramming.com/talks
http://polyglotprogramming.com/talks

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

Bonus	
Slides

Saturday, October 11, 14

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

• SQL dialect.

• Used MapReduce back end (so
annoying latency). Now running
on Tez.

• First SQL on Hadoop.

• Developed by Facebook.

	 Hive

91

Saturday, October 11, 14

http://hive.apache.org

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

• SQL integrated with Spark’s API.

• Also work with Hive tables.

• Excellent performance.

	 SparkSQL

92

Saturday, October 11, 14

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

• HiveQL front end (subset).

• C++ and Java back end.

• Provides up to 100x performance
improvement!

• Developed by Cloudera.

	 Impala

93

Saturday, October 11, 14

See http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/
cloudera-enterprise-RTQ.html.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

• HiveQL front end.

• Java back end.

• Provides up to 10-100x
performance improvement!

• Developed by Facebook.

	 Presto

94

Saturday, October 11, 14

See http://www.facebook.com/notes/facebook-engineering/presto-interacting-with-
petabytes-of-data-at-facebook/10151786197628920. However, this was just announced a
few weeks ago (at the time of this writing), so it’s new, but already in wide use at Facebook.

Copyright	 ©	 2011-‐2014,	 Dean	 Wampler,	 Some	 Rights	 Reserved

• ANSI SQL front end.

• Cascading back end.

• Same strengths/weaknesses for
runtime performance as Hive.

	 Lingual

95

Saturday, October 11, 14

http://www.cascading.org/lingual/ A relatively new “API” for Cascading, still in Beta. Because Cascading runs on
MapReduce (there’s also a standalone “local mode” for small jobs and development), it will have the same perf.
characteristics as Hive and other MR-based tools.

